Posted on

cognate improper integralsjay perez first wife

For which values of \(p\) does the integral \(\displaystyle\int_0^\infty \dfrac{x}{(x^2+1)^p} \, d{x}\) converge? Synonyms of cognate 1 : of the same or similar nature : generically alike the cognate fields of film and theater 2 : related by blood a family cognate with another also : related on the mother's side 3 a : related by descent from the same ancestral language Spanish and French are cognate languages. }\) Thus we can use Theorem 1.12.17 to compare. CLP-2 Integral Calculus (Feldman, Rechnitzer, and Yeager), { "1.01:_Definition_of_the_Integral" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.02:_Basic_properties_of_the_definite_integral" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.03:_The_Fundamental_Theorem_of_Calculus" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.04:_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.05:_Area_between_curves" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.06:_Volumes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.07:_Integration_by_parts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.08:_Trigonometric_Integrals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.09:_Trigonometric_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.10:_Partial_Fractions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.11:_Numerical_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.12:_Improper_Integrals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.13:_More_Integration_Examples" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Applications_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Sequence_and_series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Appendices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "license:ccbyncsa", "showtoc:no", "licenseversion:40", "authorname:clp", "source@https://personal.math.ubc.ca/~CLP/CLP2" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FCLP-2_Integral_Calculus_(Feldman_Rechnitzer_and_Yeager)%2F01%253A_Integration%2F1.12%253A_Improper_Integrals, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Improper integral with infinite domain of integration, Improper integral with unbounded integrand, \(\int_{-\infty}^\infty\frac{\, d{x}}{(x-2)x^2}\), \(\int_1^\infty\frac{\, d{x}}{x^p}\) with \(p \gt 0\), \(\int_0^1\frac{\, d{x}}{x^p}\) with \(p \gt 0\), \(\int_0^\infty\frac{\, d{x}}{x^p}\) with \(p \gt 0\), \(\int_{-\infty}^\infty\frac{\, d{x}}{1+x^2}\). The domain of integration of the integral \(\int_0^1\frac{\, d{x}}{x^p}\) is finite, but the integrand \(\frac{1}{x^p}\) becomes unbounded as \(x\) approaches the left end, \(0\text{,}\) of the domain of integration. A graph of \(f(x) = 1/\sqrt{x}\) is given in Figure \(\PageIndex{7}\). Figure \(\PageIndex{9}\) graphs \(y=1/x\) with a dashed line, along with graphs of \(y=1/x^p\), \(p<1\), and \(y=1/x^q\), \(q>1\). }\) That is, we need to show that for all \(x \geq 1\) (i.e. No. , f At the lower bound of the integration domain, as x goes to 0 the function goes to , and the upper bound is itself , though the function goes to 0. Figure \(\PageIndex{12}\) graphs \(f(x)=1/\sqrt{x^2+2x+5}\) and \(f(x)=1/x\), illustrating that as \(x\) gets large, the functions become indistinguishable. For the integral, as a whole, to converge every term in that sum has to converge. Consider the following integral. \[ \int_a^\infty f(x)\, d{x}=\lim_{R\rightarrow\infty}\int_a^R f(x)\, d{x} \nonumber \], \[ \int_{-\infty}^b f(x)\, d{x}=\lim_{r\rightarrow-\infty}\int_r^b f(x)\, d{x} \nonumber \], \[ \int_{-\infty}^\infty f(x)\, d{x}=\lim_{r\rightarrow-\infty}\int_r^c f(x)\, d{x} +\lim_{R\rightarrow\infty}\int_c^R f(x)\, d{x} \nonumber \]. So we consider now the limit\), $$\lim_{x\to\infty} \frac{x^2}{x^2+2x+5}.\]. Note that in (b) the limit must exist and be nonzero, while in (a) we only require that the limit exists (it can be zero). f % We will replace the infinity with a variable (usually \(t\)), do the integral and then take the limit of the result as \(t\) goes to infinity. %PDF-1.4 the antiderivative of 1 over x squared or x essentially view as 0. In such cases, the improper Riemann integral allows one to calculate the Lebesgue integral of the function. Two examples are. So, by Theorem 1.12.17, with \(a=1\text{,}\) \(f(x)=e^{-x^2}\) and \(g(x)=e^{-x}\text{,}\) the integral \(\int_1^\infty e^{-x^2}\, d{x}\) converges too (it is approximately equal to \(0.1394\)). }\) Then, \begin{align*} \frac{1}{2}L \leq \frac{f(x)}{g(x)} \leq 2L && \text{for all $x \gt B$} \end{align*}. where the integral is an improper Riemann integral. The function \(f(x) = 1/x^2\) has a vertical asymptote at \(x=0\), as shown in Figure \(\PageIndex{8}\), so this integral is an improper integral. Accessibility StatementFor more information contact us atinfo@libretexts.org. It has been the subject of many remarks and footnotes. }\), \(a\) is any number strictly less than \(0\text{,}\), \(b\) is any number strictly between \(0\) and \(2\text{,}\) and, \(c\) is any number strictly bigger than \(2\text{. Accessibility StatementFor more information contact us atinfo@libretexts.org. Convergence of a multivariable improper integral. R As the upper bound gets larger, one would expect the "area under the curve" would also grow. f limit actually existed, we say that this improper Compare the graphs in Figures \(\PageIndex{3a}\) and \(\PageIndex{3b}\); notice how the graph of \(f(x) = 1/x\) is noticeably larger. We hope this oers a good advertisement for the possibilities of experimental mathematics, . = However, such a value is meaningful only if the improper integral . provided the limit exists and is finite. We can actually extend this out to the following fact. We're going to evaluate but cannot otherwise be conveniently computed. If n of 1 over x squared dx. This is an innocent enough looking integral. Since \(\int_1^\infty g(x)\, d{x} = \int_1^\infty\frac{\, d{x}}{x}\) diverges, by Example 1.12.8 with \(p=1\text{,}\) Theorem 1.12.22(b) now tells us that \(\int_1^\infty f(x)\, d{x} = \int_1^\infty\frac{x+\sin x}{e^{-x}+x^2}\, d{x}\) diverges too. \end{align}\] A graph of the area defined by this integral is given in Figure \(\PageIndex{4}\). \begin{align*} \int_0^\infty\frac{dx}{1+x^2}&& \text{and}&& \int_0^1\frac{dx}{x} \end{align*}. }\) On the domain of integration the denominator is never zero so the integrand is continuous. Our final task is to verify that our intuition is correct. this was unbounded and we couldn't come up with y the fundamental theorem of calculus, tells us that So it's negative 1 over Define this type of improper integral as follows: The limits in the above definitions are always taken after evaluating the integral inside the limit. ) f e To answer this, evaluate the integral using Definition \(\PageIndex{2}\). Gamma function (for real z). Justify your claim. ), The trouble is the square root function. An improper integral is a definite integral that has either or both limits infinite or an integrand that approaches infinity at one or more points in the range of integration. 0 Direct link to lzmartinico's post What is a good definition, Posted 8 years ago. Improper integrals are definite integrals where one or both of the boundariesis at infinity, or where the integrand has a vertical asymptote in the interval of integration. { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.01:_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.02:_Integration_by_Parts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.03:_Trigonometric_Integrals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.04:_Trigonometric_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.05:_Partial_Fraction_Decomposition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.06:_Hyperbolic_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.07:_L\'Hopital\'s_Rule" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.08:_Improper_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6.E:_Applications_of_Antidifferentiation_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Limits" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_The_Graphical_Behavior_of_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Applications_of_the_Derivative" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Techniques_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Applications_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Sequences_and_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Curves_in_the_Plane" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Vectors" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Vector-Valued_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Functions_of_Several_Variables" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Multiple_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Appendix" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "IMPROPER INTEGRAL", "authorname:apex", "showtoc:no", "license:ccbync", "licenseversion:30", "source@http://www.apexcalculus.com/" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FCalculus_3e_(Apex)%2F06%253A_Techniques_of_Integration%2F6.08%253A_Improper_Integration, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 6.E: Applications of Antidifferentiation (Exercises), The interval over which we integrated, \([a,b]\), was a finite interval, and. The domain of the integral \(\int_1^\infty\frac{\, d{x}}{x^p}\) extends to \(+\infty\) and the integrand \(\frac{1}{x^p}\) is continuous and bounded on the whole domain. I haven't found the limit yet. becomes infinite) at \(x=2\) and at \(x=0\text{. { To log in and use all the features of Khan Academy, please enable JavaScript in your browser. and negative part It just keeps on going forever. You can make \(\infty-\infty\) be any number at all, by making a suitable replacement for \(7\text{. Problem: 0 1 sin ( x) x 3 / 2 ( 1 x) 2 / 3 d x is convergent or divergent? However, 1/(x^2) does converge. In cases like this (and many more) it is useful to employ the following theorem. ( The powerful computer algebra system Mathematica has approximately 1,000 pages of code dedicated to integration. {\textstyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}} We can split the integral up at any point, so lets choose \(x = 0\) since this will be a convenient point for the evaluation process. And because we were actually Let \(f\) and \(g\) be functions that are defined and continuous for all \(x\ge a\) and assume that \(g(x)\ge 0\) for all \(x\ge a\text{.}\). You appear to be on a device with a "narrow" screen width (, 2.4 Equations With More Than One Variable, 2.9 Equations Reducible to Quadratic in Form, 4.1 Lines, Circles and Piecewise Functions, 1.5 Trig Equations with Calculators, Part I, 1.6 Trig Equations with Calculators, Part II, 3.6 Derivatives of Exponential and Logarithm Functions, 3.7 Derivatives of Inverse Trig Functions, 4.10 L'Hospital's Rule and Indeterminate Forms, 5.3 Substitution Rule for Indefinite Integrals, 5.8 Substitution Rule for Definite Integrals, 6.3 Volumes of Solids of Revolution / Method of Rings, 6.4 Volumes of Solids of Revolution/Method of Cylinders, A.2 Proof of Various Derivative Properties, A.4 Proofs of Derivative Applications Facts, 7.9 Comparison Test for Improper Integrals, 9. What exactly is the definition of an improper integral? Lets take a look at a couple more examples. Posted 10 years ago. Let \(c\) be any real number; define $$ \int_{-\infty}^\infty f(x)\ dx \equiv \lim_{a\to-\infty}\int_a^c f(x)\ dx\ +\ \lim_{b\to\infty}\int_c^b f(x)\ dx.$$, \(\int_{-\infty}^\infty \frac1{1+x^2}\ dx\). \begin{align*} \frac{\sqrt{x}}{x^2+x} & \approx \frac{\sqrt{x}}{x^2} =\frac{1}{x^{3/2}} \end{align*}, \begin{gather*} \frac{\sqrt{x}}{x^2+x} \leq \frac{A}{x^{3/2}} \end{gather*}, Multiply both sides by \(\sqrt{x}\) (which is always positive, so the sign of the inequality does not change). $$\iint_{D} (x^2 \tan(x) + y^3 + 4)dxdy$$ . We will call these integrals convergent if the associated limit exists and is a finite number ( i.e. Here is a theorem which starts to make it more precise. What is a good definition for "improper integrals"? On a side note, notice that the area under a curve on an infinite interval was not infinity as we might have suspected it to be. So this part I'll just rewrite. If we go back to thinking in terms of area notice that the area under \(g\left( x \right) = \frac{1}{x}\) on the interval \(\left[ {1,\,\infty } \right)\) is infinite. \[\begin{align} \int_1^\infty \frac1{x\hskip1pt ^p}\ dx &= \lim_{b\to\infty}\int_1^b\frac1{x\hskip1pt ^p}\ dx\\ &= \lim_{b\to\infty}\int_1^b x^{-p}\ dx \qquad \text{(assume $p\neq 1$)}\\&= \lim_{b\to\infty} \frac{1}{-p+1}x^{-p+1}\Big|_1^b\\ &= \lim_{b\to\infty} \frac{1}{1-p}\big(b\hskip1pt^{1-p}-1^{1-p}\big).\\\end{align}\]. Example \(\PageIndex{1}\): Evaluating improper integrals. We learned Substitution, which "undoes" the Chain Rule of differentiation, as well as Integration by Parts, which "undoes" the Product Rule. \begin{gather*} \int_{-\infty}^\infty\frac{\, d{x}}{(x-2)x^2} \end{gather*}, \begin{align*} \int_{-\infty}^\infty\frac{\, d{x}}{(x-2)x^2} &=\int_{-\infty}^{a} \frac{\, d{x}}{(x-2)x^2} +\int_{a}^0 \frac{\, d{x}}{(x-2)x^2} +\int_0^b \frac{\, d{x}}{(x-2)x^2}\\ &+\int_b^2 \frac{\, d{x}}{(x-2)x^2} +\int_2^c \frac{\, d{x}}{(x-2)x^2} +\int_c^\infty \frac{\, d{x}}{(x-2)x^2} \end{align*}, So, for example, take \(a=-1, b=1, c=3\text{.}\). \end{align}\] The limit does not exist, hence the improper integral \(\int_1^\infty\frac1x\ dx\) diverges. This integral is convergent and so since they are both convergent the integral we were actually asked to deal with is also convergent and its value is. Figure \(\PageIndex{9}\): Plotting functions of the form \(1/x\,^p\) in Example \(\PageIndex{4}\). and If it converges, evaluate it. Thus this is a doubly improper integral. Consider the figure below: \begin{gather*} \big\{\ (x,y)\ \big|\ x\ge a,\ 0\le y\le g(x)\ \big\} \text{ is finite.} ), An improper integral converges if the limit defining it exists. There are essentially three cases that well need to look at. We show that a variety oftrigonometric sums have unexpected closed forms by relatingthem to cognate integrals. The previous section introduced L'Hpital's Rule, a method of evaluating limits that return indeterminate forms. Oftentimes we are interested in knowing simply whether or not an improper integral converges, and not necessarily the value of a convergent integral. And we would denote it as an improper integral. This talk is based on material in a paper to appear shortly inMAA MONTHLYwith the above title, co-authored with RobertBaillie and Jonathan M. Borwein. The integral may fail to exist because of a vertical asymptote in the function. divergentif the limit does not exist. boundary is infinity. n If, \[\lim_{x\to\infty} \frac{f(x)}{g(x)} = L,\qquad 0

How To Make An Aries Woman Obsessed With You, University Of Tennessee Sports Medicine Staff, Hamon Sa Sektor Ng Industriya, Humphrey Wedding Hashtag, Articles C

cognate improper integrals